Probabilistic Graphical Models

Lecture 3

Independence Reduces Complexity

Remember: multivariate prediction

Remember: The joint probability distribution

K. N. Toosi
University of Technology

- The probability of co-occurrence.
- Probability mass function (Discrete Variables)

- Probability Density function (Continuous Variables)
 - \circ p(x,y)

Remember: Probabilistic Modelling

- System variables X₁, X₂, ..., X_N
- Generative Model: Joint distribution $p(x_1, x_2, ..., x_N)$
- If you have the joint distribution, you have everything
- Prediction:
 - o Having p(x,y,z) = Pr(X=x, Y=y, Z=z), predict x,y,z
 - Find the most likely configuration of system variables

$$(x^*,y^*,z^*=rg\max_{x,y,z}p(x,y,z))$$

Remember: Probabilistic Modelling

- System variables X₁, X₂, ..., X_N
- Generative Model: Joint distribution p(x₁, x₂, ..., x_N)
- If you have the joint distribution, you have everything
- Prediction:
 - \circ Having p(x,y,z) = Pr(X=x, Y=y, Z=z)
 - \circ If we know Z = z_0 , predict x,y

$$x, y = \operatorname{arg\,max}_{x,y} p(x, y, z_0)$$

Probabilistic Modelling

- 1. learning/modeling:
- 2. prediction/testing

$$y_1^*,y_2^*,\ldots,y_n^*=rg\max_{y_1,\ldots,y_n}p(x_1,\ldots,x_m,y_1,\ldots,y_n)$$

$$y_i \in \{0,1\}, n = 100$$

- argmax over $2^{100} \approx 10^{30}$ different combinations of $y_1, y_2, ..., y_n$
- $10^{12} = 1000G$ iterations per second $\rightarrow 32$ billion years!

Model Representation

$$p(x_1,x_2,\ldots,x_m) \qquad \quad x_i \in [0,1]$$

- How to store in computer?
- How much storage is needed?

$$p(x_1,x_2,\ldots,x_m) \qquad x_i \in 0,1$$

• $m = 3 \longrightarrow 8$ entries

•

X ₁	x ₂	x ₃	$p(x_1, x_2, x_3)$
0	0	0	0.10
0	0	1	0.01
0	1	0	0.08
0	1	1	0.21
1	0	0	0.30
1	0	1	0.14
1	1	0	0.14
1	1	1	0.02

$$p(x_1,x_2,\ldots,x_m) \qquad x_i \in 0,1$$

• m = 3 ---> 8 entries, 7 parameters

X ₁	x ₂	X ₃	$p(x_1, x_2, x_3)$
0	0	0	0.10
0	0	1	0.01
0	1	0	0.08
0	1	1	0.21
1	0	0	0.30
1	0	1	0.14
1	1	0	0.14
1	1	1	0.02

$$p(x_1,x_2,\ldots,x_m) \qquad x_i \in 0,1$$

- $m = 3 \longrightarrow 8$ entries, 7 parameters
- 2^m entries

x ₁	x ₂	x ₃	$p(x_1, x_2, x_3)$
0	0	0	0.10
0	0	1	0.01
0	1	0	0.08
0	1	1	0.21
1	0	0	0.30
1	0	1	0.14
1	1	0	0.14
1	1	1	0.02

$$p(x_1,x_2,\ldots,x_m) \qquad x_i \in 0,1$$

- m = 3 ---> 8 entries, 7 parameters
- 2^m entries
- m = 100 --->

0.02

$$p(x_1,x_2,\ldots,x_m) \qquad x_i \in [0,1]$$

- $m = 3 \longrightarrow 8$ entries, 7 parameters
- 2^m entries
- m = 100 ---> 2^{100} entries $\approx 10^{21}$ G entries

0.14

0.14

0.02

0

0

$$p(x_1,x_2,\ldots,x_m) \qquad x_i \in [0,1]$$

- m = 3 ---> 8 entries, 7 parameters
- 2^m entries
- m = 100 ---> 2^{100} entries $\approx 10^{21} G$ entries
- 1 byte per entry -> 10²¹ GB of RAM!

Example:

The joint probability of

- having a rainfall in an hour, and
- the sky being cloudy at the moment

$$\circ \quad p(r,c) = Pr(R = r, C = c)$$

r (rain)	c (cloudy)	Pr(R = r, C = c)
0	0	0.75
0	1	0.10
1	0	0.05
1	1	0.10
	8	'

Example:

The joint probability of

- having a rainfall in an hour and
- the sky being cloudy at the moment

$$\circ \quad p(r,c) = Pr(R = r, C = c)$$

r (rain)	c (cloudy)	Pr(R = r, C = c)
0	0	0.75
0	1	0.10
1	0	0.05
1	1	0.10

$$\begin{array}{c|cccc} & & R=r, \ C=c) \\ \hline & & R=0 & R=1 \\ \hline C=0 & 0.75 & 0.05 \\ C=1 & 0.10 & 0.10 \\ \hline \end{array}$$

$$Pr(R = r) = ?$$

$$Pr(R = r) = Pr((R = r AND C = 0) OR(R = r AND C = 1))$$

$$Pr(R = r) = Pr((R = r \ AND \ C = 0) \ OR(R = r \ AND \ C = 1))$$

= $Pr(R = r \ AND \ C = 0) + Pr(R = r \ AND \ C = 1)$ (why?)

$$Pr(R = r) = Pr((R = r \ AND \ C = 0) \ OR(R = r \ AND \ C = 1))$$

= $Pr(R = r \ AND \ C = 0) + Pr(R = r \ AND \ C = 1)$ (why?)

$$Pr(R = r, C = c)$$
 $R=0 \mid R=1$
 $C=0 \mid 0.75 \mid 0.05$
 $C=1 \mid 0.10 \mid 0.10$

$$Pr(R = r)$$
 $R=0 \mid R=1$
 $0.85 \mid 0.15$

Marginal Distribution

Discrete: probability mass function p(m,n) = Pr(M=m, N=n)

$$p(m) = \Pr(M = m) = \sum_n p(m, n)$$

Continuous: probability density function p(x,y)

$$p(x) = \int p(x, y) \, dy$$

Marginal Probability

P(x, y)	x = 0	x = 1	x = 2	row sum
y = 0	0.32	0.03	0.01	0.36
y = 1	0.06	0.24	0.02	0.32
y = 2	0.02	0.03	0.27	0.32
col sum	0.40	0.30	0.30	checksum = 1.0

image from http://stats.stackexchange.com

Marginal Probability

image from www.wolfram.com

What is the probability of having a rainfall today?

Pr(R=r,C=c)		
	R=0	R=1
C=0	0.75 0.10	0.05
C=1	0.10	0.10

What is the probability of having a rainfall today?

$$Pr(R = 1) = Pr(R = 1, C = 0) + Pr(R = 1, C = 1)$$

Pr(R	= r, C	= c)
	R=0	R=1
C=0	0.75 0.10	0.05
C=1	0.10	0.10

What is the probability of having a rainfall today?

$$Pr(R = 1) = Pr(R = 1, C = 0) + Pr(R = 1, C = 1) = 0.05 + 0.10 = 0.15$$

What is the probability of having a rainfall today?

$$Pr(R = 1) = Pr(R = 1, C = 0) + Pr(R = 1, C = 1) = 0.05 + 0.10 = 0.15$$

Pr(R	Pr(R=r,C=c)		
	R=0	R=1	
	0.75	0.05	
C=1	0.10	0.10	

What is the probability of having a rainfall today?

$$Pr(R = 1) = Pr(R = 1, C = 0) + Pr(R = 1, C = 1) = 0.05 + 0.10 = 0.15$$

$$Pr(R = r, C = c)$$

$$\begin{array}{c|ccc}
R=0 & R=1 \\
\hline
C=0 & 0.75 & 0.05 \\
C=1 & 0.10 & 0.10
\end{array}$$

$$Pr(R = 1 | C = 1) =$$

What is the probability of having a rainfall today?

$$Pr(R = 1) = Pr(R = 1, C = 0) + Pr(R = 1, C = 1) = 0.05 + 0.10 = 0.15$$

$$Pr(R = r, C = c)$$
 $R=0$
 $C=0$
 $C=0$
 $C=1$
 $C=0$
 $C=0$

$$Pr(R = 1 | C = 1) =$$

What is the probability of having a rainfall today?

$$Pr(R = 1) = Pr(R = 1, C = 0) + Pr(R = 1, C = 1) = 0.05 + 0.10 = 0.15$$

$$Pr(R = r, C = c)$$
 $R=0$
 $C=0$
 $C=1$
 $C=0$
 $C=1$
 $C=0$
 $C=1$
 $C=0$
 $C=0$

$$\Pr(R = 1 \mid C = 1) = 0.10 / (0.10 + 0.10) = 0.5$$

$$= \frac{\Pr(R=1, C=1)}{\Pr(R=1, C=1) + \Pr(R=0, C=1)}$$

What is the probability of having a rainfall today?

$$Pr(R = 1) = Pr(R = 1, C = 0) + Pr(R = 1, C = 1) = 0.05 + 0.10 = 0.15$$

$$Pr(R = r, C = c)$$
 $R=0$
 $C=0$
 $C=0$
 $C=1$
 $C=0$
 $C=0$
 $C=1$
 $C=0$
 $C=0$

$$Pr(R = 1 \mid C = 1) = 0.10 / (0.10 + 0.10) = 0.5$$

$$= \frac{\Pr(R=1, C=1)}{\Pr(R=1, C=1) + \Pr(R=0, C=1)}$$

$$= \frac{\Pr(R=1, C=1)}{\Pr(C=1)}$$

What is the probability of having a rainfall today?

$$Pr(R = 1) = Pr(R = 1, C = 0) + Pr(R = 1, C = 1) = 0.05 + 0.10 = 0.15$$

$$Pr(R = r, C = c)$$
 $R=0$
 $C=0$
 $C=1$
 $C=0$
 $C=1$
 $C=0$
 $C=1$
 $C=0$
 $C=0$

$$Pr(R = 1 \mid C = 1) = 0.10 / (0.10 + 0.10) = 0.5$$

$$= \frac{\Pr(R=1, C=1)}{\Pr(R=1, C=1) + \Pr(R=0, C=1)}$$

$$= \frac{\Pr(R=1, C=1)}{\Pr(C=1)}$$

Conditional Distribution

Discrete: joint PMF p(m,n) = Pr(M=m, N=n)

$$egin{aligned} \Pr(N = n_0 \,|\, M = m) &= rac{\Pr(N = n_0, M = m)}{\sum_n \Pr(N = n, M = m)} \ &= rac{\Pr(N = n_0, M = m)}{\Pr(M = m)} \end{aligned}$$

Continuous: joint PDF p(x,y)

Conditional Distribution

Discrete: joint PMF p(m,n) = Pr(M=m, N=n)

$$egin{aligned} \Pr(N = n_0 \,|\, M = m) &= rac{\Pr(N = n_0, M = m)}{\sum_n \Pr(N = n, M = m)} \ &= rac{\Pr(N = n_0, M = m)}{\Pr(M = m)} \end{aligned}$$

Continuous: joint PDF p(x,y)

$$p(y \, | \, x) = rac{p(x,y)}{\int p(x,y) \, dy} = rac{p(x,y)}{p(x)}$$

- Pr(rain in 1hr) = .15
- Pr(rain in 1hr | cloudy now) = .5

- Pr(rain in 1hr) = .15
- Pr(rain in 1hr | I failed the PGM exam) = ?

- Pr(rain in 1hr) = .15
- Pr(rain in 1hr | cloudy now) = .5

- Pr(rain in 1hr) = .15
- $Pr(rain\ in\ 1hr\ |\ I\ failed\ the\ PGM\ exam) = .15$

Probabilistic Independence

•
$$Pr(M = m | N = n) = Pr(M = m)$$

for all m, n

•
$$Pr(M = m | N = n) = Pr(M = m)$$
 for all m, n
 $P(M = m, N = n) / Pr(N = n) = Pr(M = m)$

•
$$Pr(M = m \mid N = n) = Pr(M = m)$$
 for all m, n

$$P(M = m, N = n) / Pr(N = n) = Pr(M = m)$$

=> $P(M = m, N = n) = Pr(N = n) Pr(M = m)$

- What does independence mean?
 - does "having a rainfall" depend on "people using umbrellas"?

Continuous case:

$$p(y \mid x) = p(y)$$
 \Rightarrow $p(x,y) = p(x) p(y)$

More than two variables

- $p(x_1, x_2, x_3, ..., x_m)$
- Pairwise independence
 - \circ Every pair of variables x_i , x_j are independent
- Mutual Independence
 - \circ p(x_i | any subset of other variables) = p(x_i)
 - $p(x_1, x_2, ..., x_m) = p(x_1) p(x_2) ... p(x_m)$

$$p(x_1,x_2,x_3) \quad x_i \in \{0,1\}$$

X ₁	x ₂	x ₃	$p(x_1, x_2, x_3)$
0	0	0	0.06
0	0	1	0.04
0	1	0	0.24
0	1	1	0.16
1	0	0	0.06
1	0	1	0.04
1	1	0	0.24
1	1	1	0.16

$$p(x_1,x_2,x_3) \quad x_i \in \{0,1\}$$

x ₁	p(x ₁)
0	?
1	?

x ₂	p(x ₂)
0	?
1	?

x ₃	p(x ₃)
0	?
1	?

X ₁	x ₂	x ₃	$p(x_1, x_2, x_3)$
0	0	0	0.06
0	0	1	0.04
0	1	0	0.24
0	1	1	0.16
1	0	0	0.06
1	0	1	0.04
1	1	0	0.24
1	1	1	0.16

$$p(x_1,x_2,x_3) \quad x_i \in \{0,1\}$$

x ₁	p(x ₁)
0	?
1	?

x ₂	p(x ₂)
0	?
1	?

x ₃	p(x ₃)
0	?
1	?

X ₁	x ₂	x ₃	$p(x_1, x_2, x_3)$
0	0	0	0.06
0	0	1	0.04
0	1	0	0.24
0	1	1	0.16
1	0	0	0.06
1	0	1	0.04
1	1	0	0.24
1	1	1	0.16

$$p(x_1,x_2,x_3) \quad x_i \in \{0,1\}$$

x ₁	p(x ₁)
0	0.5
1	?

x ₂	p(x ₂)
0	?
1	?

x ₃	p(x ₃)
0	?
1	?

X ₁	x ₂	x ₃	$p(x_1, x_2, x_3)$
0	0	0	0.06
0	0	1	0.04
0	1	0	0.24
0	1	1	0.16
1	0	0	0.06
1	0	1	0.04
1	1	0	0.24
1	1	1	0.16

$$p(x_1,x_2,x_3) \quad x_i \in \{0,1\}$$

x ₁	p(x ₁)
0	0.5
1	0.5

x ₂	p(x ₂)
0	0.2
1	8.0

x ₃	p(x ₃)
0	0.6
1	0.4

X ₁	x ₂	x ₃	$p(x_1, x_2, x_3)$
0	0	0	0.06
0	0	1	0.04
0	1	0	0.24
0	1	1	0.16
1	0	0	0.06
1	0	1	0.04
1	1	0	0.24
1	1	1	0.16

$$p(x_1,x_2,x_3) \quad x_i \in \{0,1\}$$

$$p(x_1,x_2,x_3) = p(x_1)p(x_2)p(x_3)$$

x ₁	p(x ₁)
0	0.5
1	0.5

x ₂	p(x ₂)
0	0.2
1	8.0

x ₃	p(x ₃)
0	0.6
1	0.4

X ₁	x ₂	x ₃	$p(x_1, x_2, x_3)$
0	0	0	0.06
0	0	1	0.04
0	1	0	0.24
0	1	1	0.16
1	0	0	0.06
1	0	1	0.04
1	1	0	0.24
1	1	1	0.16

$$p(x_1,x_2,x_3) \quad x_i \in \{0,1\}$$

$$p(x_1,x_2,x_3) = p(x_1)p(x_2)p(x_3)$$

how many parameters?

x ₁	p(x ₁)
0	0.5
1	0.5

x ₂	p(x ₂)
0	0.2
1	8.0

x ₃	p(x ₃)
0	0.6
1	0.4

x ₁	x ₂	x ₃	$p(x_1, x_2, x_3)$
0	0	0	0.06
0	0	1	0.04
0	1	0	0.24
0	1	1	0.16
1	0	0	0.06
1	0	1	0.04
1	1	0	0.24
1	1	1	0.16

Representation

$$p(x_1, x_2, x_3) \quad x_i \in \{0, 1\}$$

$$p(x_1,x_2,x_3) = p(x_1)p(x_2)p(x_3)$$

how many parameters?

X ₁	p(x ₁)
0	0.5
1	0.5

x ₂	p(x ₂)
0	0.2
1	8.0

x ₃	p(x ₃)
0	0.6
1	0.4

X ₁	x ₂	x ₃	$p(x_1, x_2, x_3)$
0	0	0	0.06
0	0	1	0.04
0	1	0	0.24
0	1	1	0.16
1	0	0	0.06
1	0	1	0.04
1	1	0	0.24
1	1	1	0.16

Inference

$$p(x_1,x_2,x_3) \quad x_i \in \{0,1\}$$

$$p(x_1,x_2,x_3) = p(x_1)p(x_2)p(x_3)$$

$$\max_{x_1,x_2,x_3} p(x_1,x_2,x_3)$$

$$p = \max_{x_1, x_2, x_3} \, p(x_1) p(x_2) p(x_3) \, .$$

$$= \max_{x_1} p(x_1) \max_{x_2} p(x_2) \max_{x_3} p(x_3)$$

x ₁	p(x ₁)
0	0.5
1	0.5

x ₂	p(x ₂)
0	0.2
1	0.8

x ₃	p(x ₃)
0	0.6
1	0.4

X ₁	x ₂	x ₃	$p(x_1, x_2, x_3)$
0	0	0	0.06
0	0	1	0.04
0	1	0	0.24
0	1	1	0.16
1	0	0	0.06
1	0	1	0.04
1	1	0	0.24
1	1	1	0.16

Inference

$$p(x_1,x_2,x_3) \quad x_i \in \{0,1\}$$

$$p(x_1,x_2,x_3) = p(x_1)p(x_2)p(x_3)$$

$$\max_{x_1,x_2,x_3} p(x_1,x_2,x_3)$$

$$p = \max_{x_1, x_2, x_3} \, p(x_1) p(x_2) p(x_3) \, .$$

$$= \max_{x_1} p(x_1) \max_{x_2} p(x_2) \max_{x_3} p(x_3)$$

x ₁	p(x ₁)
0	0.5
1	0.5

x ₂	p(x ₂)
0	0.2
1	0.8

x ₃	p(x ₃)
0	0.6
1	0.4

X ₁	x ₂	x ₃	$p(x_1, x_2, x_3)$
0	0	0	0.06
0	0	1	0.04
0	1	0	0.24
0	1	1	0.16
1	0	0	0.06
1	0	1	0.04
1	1	0	0.24
1	1	1	0.16

Tabular representation

$$p(x_1,x_2,\ldots,x_m) \qquad x_i \in [0,1]$$

- $m = 3 \longrightarrow 8$ entries, 7 parameters
- 2^m entries
- m = 100 ---> 2^{100} entries $\approx 10^{21}$ G entries
- $p(x_1,x_2,\ldots,x_m) = p(x_1) \cdots p(x_m)$
 - How many independent parameters?

x ₁	x ₂	x ₃	$p(x_1, x_2, x_3)$
0	0	0	0.10
0	0	1	0.01
0	1	0	0.08
0	1	1	0.21
1	0	0	0.30
1	0	1	0.14
1	1	0	0.14
1	1	1	0.02

Tabular representation

$$p(x_1,x_2,\ldots,x_m) \qquad x_i \in [0,1]$$

- $m = 3 \longrightarrow 8$ entries, 7 parameters
- 2^m entries
- m = 100 ---> 2^{100} entries $\approx 10^{21}$ G entries
- $p(x_1,x_2,\ldots,x_m) = p(x_1) \cdots p(x_m)$
 - How many independent parameters? m

x ₁	x ₂	x ₃	$p(x_1, x_2, x_3)$
0	0	0	0.10
0	0	1	0.01
0	1	0	0.08
0	1	1	0.21
1	0	0	0.30
1	0	1	0.14
1	1	0	0.14
1	1	1	0.02

How to do inference?

