Probabilistic Graphical Models

 Lecture 3

 Lecture 3}

Independence Reduces Complexity

Remember: multivariate prediction

Remember: The joint probability distribution

- The probability of co-occurrence.
- Probability mass function (Discrete Variables)
- $p(x, y)=\operatorname{Pr}(X=x$ AND $Y=y)=\operatorname{Pr}(X=x, Y=y)$
- Probability Density function (Continuous Variables) - $p(x, y)$

Remember: Probabilistic Modelling

K. N. Toosi

- System variables $X_{1}, X_{2}, \ldots, X_{N}$
- Generative Model: Joint distribution p $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$
- If you have the joint distribution, you have everything
- Prediction:
- Having $p(x, y, z)=\operatorname{Pr}(X=x, y=y, Z=z)$, predict x, y, z
- Find the most likely configuration of system variables

$$
x^{*}, y^{*}, z^{*}=\arg \max _{x, y, z} p(x, y, z)
$$

Remember: Probabilistic Modelling

K. N. Toosi

- System variables $X_{1}, X_{2}, \ldots, X_{N}$
- Generative Model: Joint distribution p $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$
- If you have the joint distribution, you have everything
- Prediction:
- Having $p(x, y, z)=\operatorname{Pr}(X=x, y=y, Z=z)$
- If we know $Z=Z_{0}$, predict x, y

$$
x, y=\arg \max _{x, y} p\left(x, y, z_{0}\right)
$$

Probabilistic Modelling

1. learning/modeling:

- find $p\left(x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}\right)$

2. prediction/testing
$y_{1}^{*}, y_{2}^{*}, \ldots, y_{n}^{*}=\arg \max _{y_{1}, \ldots, y_{n}} p\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)$ $y_{i} \in\{0,1\}, n=100$

- argmax over $2^{100} \approx 10^{30}$ different combinations of $y_{1}, y_{2}, \ldots, y_{n}$
- $10^{12}=10006$ iterations per second $\rightarrow 32$ billion years!

Model Representation

$$
p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \quad x_{i} \in 0,1
$$

- How to store in computer?
- How much storage is needed?

Tabular representation

 $p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \quad x_{i} \in 0,1$- $m=3$---> 8 entries

x_{1}	x_{2}	x_{3}	$p\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0.10
0	0	1	0.01
0	1	0	0.08
0	1	1	0.21
1	0	0	0.30
1	0	1	0.14
1	1	0	0.14
1	1	1	0.02

Tabular representation

$$
p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \quad x_{i} \in 0,1
$$

- $m=3$---> 8 entries, 7 parameters

x_{1}	x_{2}	x_{3}	$p\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0.10
0	0	1	0.01
0	1	0	0.08
0	1	1	0.21
1	0	0	0.30
1	0	1	0.14
1	1	0	0.14
1	1	1	0.02

Tabular representation

$$
p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \quad x_{i} \in 0,1
$$

- $m=3$---> 8 entries, 7 parameters
- 2^{m} entries

x_{1}	x_{2}	x_{3}	$p\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0.10
0	0	1	0.01
0	1	0	0.08
0	1	1	0.21
1	0	0	0.30
1	0	1	0.14
1	1	0	0.14
1	1	1	0.02

Tabular representation

$$
p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \quad x_{i} \in 0,1
$$

- $m=3$---> 8 entries, 7 parameters
- 2^{m} entries
- $m=100$--->

x_{1}	x_{2}	x_{3}	$p\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0.10
0	0	1	0.01
0	1	0	0.08
0	1	1	0.21
1	0	0	0.30
1	0	1	0.14
1	1	0	0.14
1	1	1	0.02

Tabular representation

$$
p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \quad x_{i} \in 0,1
$$

- $m=3$---> 8 entries, 7 parameters
- 2^{m} entries
- $m=100$---> 2^{100} entries $\approx 10^{21} G$ entries

x_{1}	x_{2}	x_{3}	$p\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0.10
0	0	1	0.01
0	1	0	0.08
0	1	1	0.21
1	0	0	0.30
1	0	1	0.14
1	1	0	0.14
1	1	1	0.02

Tabular representation

$$
p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \quad x_{i} \in 0,1
$$

- $m=3$---> 8 entries, 7 parameters
- 2^{m} entries
- $m=100$---> 2^{100} entries $\approx 10^{21} G$ entries
- 1 byte per entry -> 10^{21} GB of RAM!

x_{1}	x_{2}	x_{3}	$p\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0.10
0	0	1	0.01
0	1	0	0.08
0	1	1	0.21
1	0	0	0.30
1	0	1	0.14
1	1	0	0.14
1	1	1	0.02

Example:

The joint probability of

- having a rainfall in an hour, and
- the sky being cloudy at the moment
- $p(r, c)=\operatorname{Pr}(R=r, C=c)$

r (rain)	c (cloudy)	$\operatorname{Pr}(R=r, C=c)$
0	0	0.75
0	1	0.10
1	0	0.05
1	1	0.10

Example:

The joint probability of

- having a rainfall in an hour and
- the sky being cloudy at the moment
- $p(r, c)=\operatorname{Pr}(R=r, C=c)$

r (rain)	c (cloudy)	$\operatorname{Pr}(R=r, C=c)$
0	0	0.75
0	1	0.10
1	0	0.05
1	1	0.10

\[

\]

Question

- Having the joint distribution $\operatorname{Pr}(R=r, C=c)$, what is $\operatorname{Pr}(R=r)$?

$$
\operatorname{Pr}(R=r)=?
$$

Question

- Having the joint distribution $\operatorname{Pr}(R=r, C=c)$, what is $\operatorname{Pr}(R=r)$?

$$
\operatorname{Pr}(R=r)=\operatorname{Pr}((R=r \text { AND } C=0) O R(R=r \text { AND } C=1))
$$

Question

- Having the joint distribution $\operatorname{Pr}(R=r, C=c)$, what is $\operatorname{Pr}(R=r)$?

$$
\begin{aligned}
\operatorname{Pr}(R=r) & =\operatorname{Pr}((R=r \text { AND } C=0) O R(R=r \text { AND } C=1)) \\
& =\operatorname{Pr}(R=r \text { AND } C=0)+\operatorname{Pr}(R=r \text { AND } C=1) \quad(w h y ?)
\end{aligned}
$$

Question

- Having the joint distribution $\operatorname{Pr}(R=r, C=c)$, what is $\operatorname{Pr}(R=r)$?

$$
\begin{align*}
\operatorname{Pr}(R=r) & =\operatorname{Pr}((R=r \text { AND } C=0) O R(R=r \text { AND } C=1)) \\
& =\operatorname{Pr}(R=r \text { AND } C=0)+\operatorname{Pr}(R=r \text { AND } C=1) \tag{why?}
\end{align*}
$$

$$
\begin{aligned}
& \operatorname{Pr}(R=r, C=c) \\
& \begin{array}{l|l|l}
& \mathrm{R}=0 & \mathrm{R}=1 \\
\hline \mathrm{C}=0 & 0.75 & 0.05 \\
\mathrm{C}=1 & 0.10 & 0.10
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\operatorname{Pr}(R=r) \\
\begin{array}{c|c|c}
\\
\mathrm{R}=0 & \mathrm{R}=1 \\
\hline 0.85 & 0.15
\end{array}
\end{gathered}
$$

Marginal Distribution

- Discrete: probability mass function $p(m, n)=\operatorname{Pr}(M=m, N=n)$

$$
p(m)=\operatorname{Pr}(M=m)=\sum_{n} p(m, n)
$$

- Continuous: probability density function $p(x, y)$

$$
p(x)=\int p(x, y) d y
$$

Marginal Probability

$P(x, y)$	$x=0$	$x=1$	$x=2$	row sum
$y=0$	0.32	0.03	0.01	0.36
$y=1$	0.06	0.24	0.02	$\mathbf{0 . 3 2}$
$y=2$	0.02	0.03	0.27	$\mathbf{0 . 3 2}$
col sum	$\mathbf{0 . 4 0}$	$\mathbf{0 . 3 0}$	$\mathbf{0 . 3 0}$	checksum $=1.0$

Marginal Probability

image from www.wolfram.com

Question

- What is the probability of having a rainfall today?

\[

\]

Question

- What is the probability of having a rainfall today?

$$
\operatorname{Pr}(R=1)=\operatorname{Pr}(R=1, C=0)+\operatorname{Pr}(R=1, C=1)
$$

$\operatorname{Pr}(R=r, C=c)$

	$\mathrm{R}=0$	$\mathrm{R}=1$
$\mathrm{C}=0$	0.75	0.05
$\mathrm{C}=1$	0.10	0.10

Question

- What is the probability of having a rainfall today?

$$
\operatorname{Pr}(R=1)=\operatorname{Pr}(R=1, C=0)+\operatorname{Pr}(R=1, C=1)=0.05+0.10=0.15
$$

$$
\begin{aligned}
& \operatorname{Pr}(R=r, C=c) \\
& \begin{array}{l|l||l|}
& \mathrm{R}=0 & \mathrm{R}=1 \\
\hline \mathrm{C}=0 & 0.75 & 0.05 \\
\mathrm{C}=1 & 0.10 & 0.10 \\
&
\end{array}
\end{aligned}
$$

Question

- What is the probability of having a rainfall today?

$$
\operatorname{Pr}(R=1)=\operatorname{Pr}(R=1, C=0)+\operatorname{Pr}(R=1, C=1)=0.05+0.10=0.15
$$

- If we know the sky is cloudy, what is the probability of having a rainfall today?

\[

\]

Question

- What is the probability of having a rainfall today?

$$
\operatorname{Pr}(R=1)=\operatorname{Pr}(R=1, C=0)+\operatorname{Pr}(R=1, C=1)=0.05+0.10=0.15
$$

- If we know the sky is cloudy, what is the probability of having a rainfall today?

\[

\]

Question

- What is the probability of having a rainfall today?

$$
\operatorname{Pr}(R=1)=\operatorname{Pr}(R=1, C=0)+\operatorname{Pr}(R=1, C=1)=0.05+0.10=0.15
$$

- If we know the sky is cloudy, what is the probability of having a rainfall today?

\[

\]

Question

- What is the probability of having a rainfall today?

$$
\operatorname{Pr}(R=1)=\operatorname{Pr}(R=1, C=0)+\operatorname{Pr}(R=1, C=1)=0.05+0.10=0.15
$$

- If we know the sky is cloudy, what is the probability of having a rainfall today?

\[

\]

$$
\operatorname{Pr}(R=1 \mid C=1)=0.10 /(0.10+0.10)=0.5
$$

$$
=\frac{\operatorname{Pr}(R=1, C=1)}{\operatorname{Pr}(R=1, C=1)+\operatorname{Pr}(R=0, C=1)}
$$

Question

- What is the probability of having a rainfall today?

$$
\operatorname{Pr}(R=1)=\operatorname{Pr}(R=1, C=0)+\operatorname{Pr}(R=1, C=1)=0.05+0.10=0.15
$$

- If we know the sky is cloudy, what is the probability of having a rainfall today?

\[

\]

Question

- What is the probability of having a rainfall today?

$$
\operatorname{Pr}(R=1)=\operatorname{Pr}(R=1, C=0)+\operatorname{Pr}(R=1, C=1)=0.05+0.10=0.15
$$

- If we know the sky is cloudy, what is the probability of having a rainfall today?

\[

\]

Conditional Distribution

- Discrete: joint PMF $\quad p(m, n)=\operatorname{Pr}(M=m, N=n)$

$$
\begin{aligned}
\operatorname{Pr}\left(N=n_{0} \mid M=m\right) & =\frac{\operatorname{Pr}\left(N=n_{0}, M=m\right)}{\sum_{n} \operatorname{Pr}(N=n, M=m)} \\
& =\frac{\operatorname{Pr}\left(N=n_{0}, M=m\right)}{\operatorname{Pr}(M=m)}
\end{aligned}
$$

- Continuous: joint PDF $p(x, y)$

Conditional Distribution

- Discrete: joint PMF $\quad p(m, n)=\operatorname{Pr}(M=m, N=n)$

$$
\begin{aligned}
\operatorname{Pr}\left(N=n_{0} \mid M=m\right) & =\frac{\operatorname{Pr}\left(N=n_{0}, M=m\right)}{\sum_{n} \operatorname{Pr}(N=n, M=m)} \\
& =\frac{\operatorname{Pr}\left(N=n_{0}, M=m\right)}{\operatorname{Pr}(M=m)}
\end{aligned}
$$

- Continuous: joint PDF $p(x, y)$

$$
p(y \mid x)=\frac{p(x, y)}{\int p(x, y) d y}=\frac{p(x, y)}{p(x)}
$$

Question

- $\operatorname{Pr}($ rain in 1 hr$)=.15$
- $\operatorname{Pr}($ rain in $1 \mathrm{hr} \mid$ cloudy now $)=.5$
- $\operatorname{Pr}($ rain in 1 hr$)=.15$
- $\operatorname{Pr}($ rain in $1 \mathrm{hr} \mid \mathrm{I}$ failed the $P G M$ exam $)=$?

Question

- $\operatorname{Pr}($ rain in 1 hr$)=.15$
- $\operatorname{Pr}($ rain in $1 \mathrm{hr} \mid$ cloudy now $)=.5$
- $\operatorname{Pr}($ rain in 1 hr$)=.15$
- $\operatorname{Pr}($ rain in $1 \mathrm{hr} \mid \mathrm{I}$ failed the $P G M$ exam $)=.15$

Probabilistic Independence

- $\operatorname{Pr}(M=m \mid N=n)=\operatorname{Pr}(M=m) \quad$ for all m, n

Probabilistic Independence

- $\operatorname{Pr}(M=m \mid N=n)=\operatorname{Pr}(M=m) \quad$ for all m, n

$$
P(M=m, N=n) / \operatorname{Pr}(N=n)=\operatorname{Pr}(M=m)
$$

Probabilistic Independence

- $\operatorname{Pr}(M=m \mid N=n)=\operatorname{Pr}(M=m)$ for all m, n

$$
\begin{aligned}
& P(M=m, N=n) / \operatorname{Pr}(N=n)=\operatorname{Pr}(M=m) \\
& \Rightarrow P(M=m, N=n)=\operatorname{Pr}(N=n) \operatorname{Pr}(M=m)
\end{aligned}
$$

Probabilistic Independence

- $\operatorname{Pr}(M=m \mid N=n)=\operatorname{Pr}(M=m) \quad$ for all m, n

$$
\begin{aligned}
& P(M=m, N=n) / \operatorname{Pr}(N=n)=\operatorname{Pr}(M=m) \\
& \Rightarrow P(M=m, N=n)=\operatorname{Pr}(N=n) \operatorname{Pr}(M=m)
\end{aligned}
$$

- What does independence mean?
- does "having a rainfall" depend on "people using umbrellas"?

Probabilistic Independence

- $\operatorname{Pr}(M=m \mid N=n)=\operatorname{Pr}(M=m) \quad$ for all m, n

$$
\begin{aligned}
& P(M=m, N=n) / \operatorname{Pr}(N=n)=\operatorname{Pr}(M=m) \\
& \Rightarrow P(M=m, N=n)=\operatorname{Pr}(N=n) \operatorname{Pr}(M=m)
\end{aligned}
$$

- Continuous case:

$$
p(y \mid x)=p(y) \quad \Rightarrow \quad p(x, y)=p(x) p(y)
$$

More than two variables

- $p\left(x_{1}, x_{2}, x_{3}, \ldots, x_{m}\right)$
- Pairwise independence
- Every pair of variables x_{i}, x_{j} are independent
- Mutual Independence
- $p\left(x_{i} \mid\right.$ any subset of other variables $)=p\left(x_{i}\right)$
- $p\left(x_{1}, x_{2}, \ldots, x_{m}\right)=p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{m}\right)$
testing independence

$$
p\left(x_{1}, x_{2}, x_{3}\right) \quad x_{i} \in\{0,1\}
$$

x_{1}	x_{2}	x_{3}	$p\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0.06
0	0	1	0.04
0	1	0	0.24
0	1	1	0.16
1	0	0	0.06
1	0	1	0.04
1	1	0	0.24
1	1	1	0.16

testing independence

$$
p\left(x_{1}, x_{2}, x_{3}\right) \quad x_{i} \in\{0,1\}
$$

x_{1}	x_{2}	x_{3}	$p\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0.06
0	0	1	0.04
0	1	0	0.24
0	1	1	0.16
1	0	0	0.06
1	0	1	0.04
1	1	0	0.24
1	1	1	0.16

testing independence

$$
p\left(x_{1}, x_{2}, x_{3}\right) \quad x_{i} \in\{0,1\}
$$

x_{1}	x_{2}	x_{3}	$p\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0.06
0	0	1	0.04
0	1	0	0.24
0	1	1	0.16
1	0	0	0.06
1	0	1	0.04
1	1	0	0.24
1	1	1	0.16

testing independence

$$
p\left(x_{1}, x_{2}, x_{3}\right) \quad x_{i} \in\{0,1\}
$$

x_{1}	x_{2}	x_{3}	$p\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0.06
0	0	1	0.04
0	1	0	0.24
0	1	1	0.16
1	0	0	0.06
1	0	1	0.04
1	1	0	0.24
1	1	1	0.16

testing independence

$$
p\left(x_{1}, x_{2}, x_{3}\right) \quad x_{i} \in\{0,1\}
$$

x_{1}	x_{2}	x_{3}	$p\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0.06
0	0	1	0.04
0	1	0	0.24
0	1	1	0.16
1	0	0	0.06
1	0	1	0.04
1	1	0	0.24
1	1	1	0.16

testing independence

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, x_{3}\right) \quad x_{i} \in\{0,1\} \\
& p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right)
\end{aligned}
$$

x_{1}	x_{2}	x_{3}	$p\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0.06
0	0	1	0.04
0	1	0	0.24
0	1	1	0.16
1	0	0	0.06
1	0	1	0.04
1	1	0	0.24
1	1	1	0.16

testing independence

$$
\begin{aligned}
p\left(x_{1}, x_{2}, x_{3}\right) & x_{i} \in\{0,1\} \\
p\left(x_{1}, x_{2}, x_{3}\right)= & p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right)
\end{aligned}
$$

how many parameters?

x_{1}	$p\left(x_{1}\right)$
0	0.5
1	0.5

x_{2}	$p\left(x_{2}\right)$
0	0.2
1	0.8

x_{3}	$p\left(x_{3}\right)$
0	0.6
1	0.4

x_{1}	x_{2}	x_{3}	$p\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0.06
0	0	1	0.04
0	1	0	0.24
0	1	1	0.16
1	0	0	0.06
1	0	1	0.04
1	1	0	0.24
1	1	1	0.16

Representation

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, x_{3}\right) \quad x_{i} \in\{0,1\} \\
& p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right)
\end{aligned}
$$

how many parameters?

x_{1}	$p\left(x_{1}\right)$
0	0.5
1	0.5

x_{2}	$p\left(x_{2}\right)$
0	0.2
1	0.8

x_{3}	$p\left(x_{3}\right)$
0	0.6
1	0.4

x_{1}	x_{2}	x_{3}	$p\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0.06
0	0	1	0.04
0	1	0	0.24
0	1	1	0.16
1	0	0	0.06
1	0	1	0.04
1	1	0	0.24
1	1	1	0.16

Inference

$p\left(x_{1}, x_{2}, x_{3}\right) \quad x_{i} \in\{0,1\}$
$p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right)$
$\max _{x_{1}, x_{2}, x_{3}} p\left(x_{1}, x_{2}, x_{3}\right)$
$=\max _{x_{1}, x_{2}, x_{3}} p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right)$
$=\max _{x_{1}} p\left(x_{1}\right) \max _{x_{2}} p\left(x_{2}\right) \max _{x_{3}} p\left(x_{3}\right)$

x_{1}	$p\left(x_{1}\right)$
0	0.5
1	0.5

x_{2}	$p\left(x_{2}\right)$
0	0.2
1	0.8

x_{3}	$p\left(x_{3}\right)$
0	0.6
1	0.4

x_{1}	x_{2}	x_{3}	$p\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0.06
0	0	1	0.04
0	1	0	0.24
0	1	1	0.16
1	0	0	0.06
1	0	1	0.04
1	1	0	0.24
1	1	1	0.16

Inference

$p\left(x_{1}, x_{2}, x_{3}\right) \quad x_{i} \in\{0,1\}$
$p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right)$
$\max _{x_{1}, x_{2}, x_{3}} p\left(x_{1}, x_{2}, x_{3}\right)$
$=\max _{x_{1}, x_{2}, x_{3}} p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right)$
$=\max _{x_{1}} p\left(x_{1}\right) \max _{x_{2}} p\left(x_{2}\right) \max _{x_{3}} p\left(x_{3}\right)$

x_{1}	$p\left(x_{1}\right)$
0	0.5
1	0.5

x_{2}	$p\left(x_{2}\right)$
0	0.2
1	0.8

x_{3}	$p\left(x_{3}\right)$
0	0.6
1	0.4

x_{1}	x_{2}	x_{3}	$p\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0.06
0	0	1	0.04
0	1	0	0.24
0	1	1	0.16
1	0	0	0.06
1	0	1	0.04
1	1	0	0.24
1	1	1	0.16

Tabular representation

$$
p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \quad x_{i} \in 0,1
$$

- $m=3$---> 8 entries, 7 parameters
- 2^{m} entries
- $m=100$---> 2^{100} entries $\approx 10^{21} G$ entries
$p\left(x_{1}, x_{2}, \ldots, x_{m}\right)=p\left(x_{1}\right) \cdots p\left(x_{m}\right)$
- How many independent parameters?

x_{1}	x_{2}	x_{3}	$p\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0.10
0	0	1	0.01
0	1	0	0.08
0	1	1	0.21
1	0	0	0.30
1	0	1	0.14
1	1	0	0.14
1	1	1	0.02

Tabular representation

$$
p\left(x_{1}, x_{2}, \ldots, x_{m}\right) \quad x_{i} \in 0,1
$$

- $m=3$---> 8 entries, 7 parameters
- 2^{m} entries
- $m=100$---> 2^{100} entries $\approx 10^{21} G$ entries
$p\left(x_{1}, x_{2}, \ldots, x_{m}\right)=p\left(x_{1}\right) \cdots p\left(x_{m}\right)$
- How many independent parameters? m

x_{1}	x_{2}	x_{3}	$p\left(x_{1}, x_{2}, x_{3}\right)$
0	0	0	0.10
0	0	1	0.01
0	1	0	0.08
0	1	1	0.21
1	0	0	0.30
1	0	1	0.14
1	1	0	0.14
1	1	1	0.02

How to do inference?

